Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves.

نویسندگان

  • I Cakmak
  • H Marschner
چکیده

The influence of varied Mg supply (10-1000 micromolar) and light intensity (100-580 microeinsteins per square meter per second) on the concentrations of ascorbate (AsA) and nonprotein SH-compounds and the activities of superoxide dismutase (SOD; EC 1.15.11) and the H(2)O(2) scavenging enzymes, AsA peroxidase (EC 1.11.1.7), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2) were studied in bean (Phaseolus vulgaris L.) leaves over a 13-day period. The concentrations of AsA and SH-compounds and the activities of SOD and H(2)O(2) scavenging enzymes increased with light intensity, in particular in Mg-deficient leaves. Over the 12-day period of growth for a given light intensity, the concentrations of AsA and SH-compounds and the activities of these enzymes remained more or less constant in Mg-sufficient leaves. In contrast, in Mg-deficient leaves, a progressive increase was recorded, particularly in concentrations of AsA and activities of AsA peroxidase and glutathione reductase, whereas the activities of guaiacol peroxidase and catalase were only slightly enhanced. Partial shading of Mg-deficient leaf blades for 4 days prevented chlorosis, and the activities of the O(2) (.-) and H(2)O(2) scavenging enzymes remained at a low level. The results demonstrate the role of both light intensity and Mg nutritional status on the regulation of O(2) (.-) and H(2)O(2) scavenging enzymes in chloroplasts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of Superoxide Dismutase Protects Plants from Oxidative Stress' lnduction of Ascorbate Peroxidase in Superoxide Dismutase-Overexpressing Plants

Photosynthesis of leaf discs from transgenic tobacco plants (Nicotiana tabacum) that express a chimeric gene that encodes chloroplast-localized Cu/Zn superoxide dismutase (SOD+) was protected from oxidative stress caused by exposure to high light intensity and low temperature. Under the same conditions, leaf discs of plants that did not express the pea SOD isoform (SOD-) had substantially lower...

متن کامل

Arsenic-induced oxidative stress and its reversal by thiourea in mung bean (Vigna radiata (L.) Wilczek.) genotype

A pot culture experiment was conducted in mung bean (Vigna radiata (L.) Wilczek.) genotype PUSA Baisakhi to test the effect of sodium arsenate and thiourea (TU). Arsenic at 25 μM caused significant inhibition of growth as indicated by reduced shoot and root dry weight and reduction in photosynthetic capacity. Significant decline in ascorbate peroxidase, dehydroascorbate reductase and glutathion...

متن کامل

Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity.

This study examined the effect of increasing chloroplastic superoxide dismutase (SOD), ascorbate peroxidase (APX), or glutathione reductase (GR) activity via plant transformation of cotton on the initial recovery of photosynthesis following exposures to 10 degrees C and high photon flux density (PFD). Growing wild-type or non-expressing segregate plants (controls) and transformants at two PFDs ...

متن کامل

Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress.

To elucidate how physiological and biochemical mechanisms of chilling stress are regulated by abscisic acid (ABA) pretreatment, pepper variety (cv. 'P70') seedlings were pretreated with 0.57 mM ABA for 72 h and then subjected to chilling stress at 10°/6°C (day/night). Chilling stress caused severe necrotic lesions on the leaves and increased malondialdehyde and H(2)O(2) levels. Activities of mo...

متن کامل

Overexpression of iron superoxide dismutase in transformed poplar modifies the regulation of photosynthesis at low CO2 partial pressures or following exposure to the prooxidant herbicide methyl viologen.

Chloroplast-targeted overexpression of an Fe superoxide dismutase (SOD) from Arabidopsis thaliana resulted in substantially increased foliar SOD activities. Ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase activities were similar in the leaves from all of the lines, but dehydroascorbate reductase activity was increased in the leaves of the FeSOD transformants rela...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 98 4  شماره 

صفحات  -

تاریخ انتشار 1992